On the Independence Number of Graphs with Maximum Degree 3

نویسندگان

  • Iyad A. Kanj
  • Fenghui Zhang
چکیده

Let G be an undirected graph with maximum degree at most 3 such that G does not contain any of the three graphs shown in Figure 1 as a subgraph. We prove that the independence number of G is at least n(G)/3 + nt(G)/42, where n(G) is the number of vertices in G and nt(G) is the number of nontriangle vertices in G. This bound is tight as implied by the wellknown tight lower bound of 5n(G)/14 on the independence number of triangle-free graphs of maximum degree at most 3. We show an algorithmic application of the aforementioned combinatorial result to the area of parameterized complexity. We present a linear-time kernelization algorithm for the independent set problem on graphs with maximum degree at most 3 that computes a kernel of size at most 140k/47 < 3k, where k is the given parameter. This improves the known 3k upper bound on the kernel size for the problem, and implies 140k/93 lower bound on the kernel size for the vertex cover problem on graphs with maximum degree at most 3.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On reverse degree distance of unicyclic graphs

The reverse degree distance of a connected graph $G$ is defined in discrete mathematical chemistry as [ r (G)=2(n-1)md-sum_{uin V(G)}d_G(u)D_G(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $G$, respectively, $d_G(u)$ is the degree of vertex $u$, $D_G(u)$ is the sum of distance between vertex $u$ and all other vertices of $G$, and $V(G)$ is the...

متن کامل

Bounds on the independence number of a graph in terms of order, size and maximum degree

• We prove several best-possible lower bounds in terms of the order and the average degree for the independence number of graphs which are connected and/or satisfy some odd girth condition. Our main result is the extension of a lower bound for the independence number of triangle-free graphs of maximum degree at most 3 due to Heckman and Thomas [A New Proof of the Independence Ratio of Triangle-...

متن کامل

Independence, odd girth, and average degree

We prove several best-possible lower bounds in terms of the order and the average degree for the independence number of graphs which are connected and/or satisfy some odd girth condition. Our main result is the extension of a lower bound for the independence number of triangle-free graphs of maximum degree at most 3 due to Heckman and Thomas [A New Proof of the Independence Ratio of Triangle-Fr...

متن کامل

k-forested choosability of graphs with bounded maximum average degree

A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...

متن کامل

The second geometric-arithmetic index for trees and unicyclic graphs

Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 478  شماره 

صفحات  -

تاریخ انتشار 2011